Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.11.24301704

ABSTRACT

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-(, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naive T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naive COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets. One sentence summaryWe observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.


Subject(s)
Coronavirus Infections , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.03.565292

ABSTRACT

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.25.23297469

ABSTRACT

Background. Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 infection despite vaccination and leads to long-term kidney dysfunction. However, peripheral blood molecular signatures in AKI from COVID-19 and their association with long-term kidney dysfunction are yet unexplored. Methods. In patients hospitalized with SARS-CoV2, we performed bulk RNA sequencing using peripheral blood mononuclear cells (PBMCs). We applied linear models accounting for technical and biological variability on RNA-Seq data accounting for false discovery rate (FDR) and compared the functional enrichment and pathway results to a historical sepsis-AKI cohort. Finally, we evaluated the association of these signatures with long-term trends in kidney function. Results. Of 283 patients, 106 had AKI. After adjustment for sex, age, mechanical ventilation, and chronic kidney disease (CKD), we identified 2635 significant differential gene expressions at FDR<0.05. Top canonical pathways were EIF2 signaling, oxidative phosphorylation, mTOR signaling, and Th17 signaling, indicating mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Comparison with sepsis associated AKI showed considerable overlap of key pathways (48.14%). Using follow-up estimated glomerular filtration rate (eGFR) measurements from 115 patients, we found that 164/2635 (6.2%) of the significantly differentiated genes were associated with overall decrease in long-term kidney function. The strongest associations were autophagy, renal impairment via fibrosis and cardiac structure/function. Conclusions. We show that AKI in SARS-CoV2 is a multifactorial process with mitochondrial dysfunction driven by ER stress whereas long-term kidney function decline is associated with cardiac structure and function, and immune dysregulation. Functional overlap with sepsis-AKI also highlights common signatures indicating generalizability in therapeutic approaches.


Subject(s)
COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2379226.v1

ABSTRACT

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Methods Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). Results We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-Cindicating tubular dysfunction and injury. Conclusions Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Subject(s)
Kidney Diseases , Renal Tubular Transport, Inborn Errors , Acute Kidney Injury , COVID-19 , Fanconi Syndrome , Cardiomyopathies
5.
- IMPACC group; Al Ozonoff; Joanna Schaenman; Naresh Doni Jayavelu; Carly E. Milliren; Carolyn S. Calfee; Charles B. Cairns; Monica Kraft; Lindsey R. Baden; Albert C. Shaw; Florian Krammer; Harm Van Bakel; Denise Esserman; Shanshan Liu; Ana Fernandez Sesma; Viviana Simon; David A. Hafler; Ruth R. Montgomery; Steven H. Kleinstein; Ofer Levy; Christian Bime; Elias K. Haddad; David J. Erle; Bali Pulendran; Kari C. Nadeau; Mark M. Davis; Catherine L. Hough; William B. Messer; Nelson I. Agudelo Higuita; Jordan P. Metcalf; Mark A. Atkinson; Scott C. Brakenridge; David B. Corry; Farrah Kheradmand; Lauren I. R. Ehrlich; Esther Melamed; Grace A. McComsey; Rafick Sekaly; Joann Diray-Arce; Bjoern Peters; Alison D. Augustine; Elaine F. Reed; Kerry McEnaney; Brenda Barton; Claudia Lentucci; Mehmet Saluvan; Ana C. Chang; Annmarie Hoch; Marisa Albert; Tanzia Shaheen; Alvin Kho; Sanya Thomas; Jing Chen; Maimouna D. Murphy; Mitchell Cooney; Scott Presnell; Leying Guan; Jeremy Gygi; Shrikant Pawar; Anderson Brito; Zain Khalil; James A. Overton; Randi Vita; Kerstin Westendorf; Cole Maguire; Slim Fourati; Ramin Salehi-Rad; Aleksandra Leligdowicz; Michael Matthay; Jonathan Singer; Kirsten N. Kangelaris; Carolyn M. Hendrickson; Matthew F. Krummel; Charles R. Langelier; Prescott G. Woodruff; Debra L. Powell; James N. Kim; Brent Simmons; I.Michael Goonewardene; Cecilia M. Smith; Mark Martens; Jarrod Mosier; Hiroki Kimura; Amy Sherman; Stephen Walsh; Nicolas Issa; Charles Dela Cruz; Shelli Farhadian; Akiko Iwasaki; Albert I. Ko; Evan J. Anderson; Aneesh Mehta; Jonathan E. Sevransky; Sharon Chinthrajah; Neera Ahuja; Angela Rogers; Maja Artandi; Sarah A.R. Siegel; Zhengchun Lu; Douglas A. Drevets; Brent R. Brown; Matthew L. Anderson; Faheem W. Guirgis; Rama V. Thyagarajan; Justin Rousseau; Dennis Wylie; Johanna Busch; Saurin Gandhi; Todd A. Triplett; George Yendewa; Olivia Giddings; Tatyana Vaysman; Bernard Khor; Adeeb Rahman; Daniel Stadlbauer; Jayeeta Dutta; Hui Xie; Seunghee Kim-Schulze; Ana Silvia Gonzalez-Reiche; Adriana van de Guchte; Holden T. Maecker; Keith Farrugia; Zenab Khan; Joanna Schaenman; Elaine F. Reed; Ramin Salehi-Rad; David Elashoff; Jenny Brook; Estefania Ramires-Sanchez; Megan Llamas; Adreanne Rivera; Claudia Perdomo; Dawn C. Ward; Clara E. Magyar; Jennifer Fulcher; Yumiko Abe-Jones; Saurabh Asthana; Alexander Beagle; Sharvari Bhide; Sidney A. Carrillo; Suzanna Chak; Rajani Ghale; Ana Gonzales; Alejandra Jauregui; Norman Jones; Tasha Lea; Deanna Lee; Raphael Lota; Jeff Milush; Viet Nguyen; Logan Pierce; Priya Prasad; Arjun Rao; Bushra Samad; Cole Shaw; Austin Sigman; Pratik Sinha; Alyssa Ward; Andrew - Willmore; Jenny Zhan; Sadeed Rashid; Nicklaus Rodriguez; Kevin Tang; Luz Torres Altamirano; Legna Betancourt; Cindy Curiel; Nicole Sutter; Maria Tercero Paz; Gayelan Tietje-Ulrich; Carolyn Leroux; Jennifer Connors; Mariana Bernui; Michele Kutzler; Carolyn Edwards; Edward Lee; Edward Lin; Brett Croen; Nicholas Semenza; Brandon Rogowski; Nataliya Melnyk; Kyra Woloszczuk; Gina Cusimano; Matthew Bell; Sara Furukawa; Renee McLin; Pamela Marrero; Julie Sheidy; George P. Tegos; Crystal Nagle; Nathan Mege; Kristen Ulring; Vicki Seyfert-Margolis; Michelle Conway; Dave Francisco; Allyson Molzahn; Heidi Erickson; Connie Cathleen Wilson; Ron Schunk; Trina Hughes; Bianca Sierra; Kinga K. Smolen; Michael Desjardins; Simon van Haren; Xhoi Mitre; Jessica Cauley; Xiofang Li; Alexandra Tong; Bethany Evans; Christina Montesano; Jose Humberto Licona; Jonathan Krauss; Jun Bai Park Chang; Natalie Izaguirre; Omkar Chaudhary; Andreas Coppi; John Fournier; Subhasis Mohanty; M. Catherine Muenker; Allison Nelson; Khadir Raddassi; Michael Rainone; William Ruff; Syim Salahuddin; Wade L. Schulz; Pavithra Vijayakumar; Haowei Wang; Elsio Wunder Jr.; H. Patrick Young; Yujiao Zhao; Miti Saksena; Deena Altman; Erna Kojic; Komal Srivastava; Lily Q. Eaker; Maria Carolina Bermudez; Katherine F. Beach; Levy A. Sominsky; Arman Azad; Juan Manuel Carreno; Gagandeep Singh; Ariel Raskin; Johnstone Tcheou; Dominika Bielak; Hisaaki Kawabata; Lubbertus CF Mulder; Giulio Kleiner; Laurel Bristow; Laila Hussaini; Kieffer Hellmeister; Hady Samaha; Andrew Cheng; Christine Spainhour; Erin M. Scherer; Brandi Johnson; Amer Bechnak; Caroline R. Ciric; Lauren Hewitt; Bernadine Panganiban; Chistopher Huerta; Jacob Usher; Erin Carter; Nina Mcnair; Susan Pereira Ribeiro; Alexandra S. Lee; Evan Do; Andrea Fernandes; Monali Manohar; Thomas Hagan; Catherine Blish; Hena Naz Din; Jonasel Roque; Samuel S. Yang; Amanda E. Brunton; Peter E. Sullivan; Matthew Strnad; Zoe L. Lyski; Felicity J. Coulter; John L. Booth; Lauren A. Sinko; Lyle Moldawer; Brittany Borrensen; Brittney Roth-Manning; Li-Zhen Song; Ebony Nelson; Megan Lewis-Smith; Jacob Smith; Pablo Guaman Tipan; Nadia Siles; Sam Bazzi; Janelle Geltman; Kerin Hurley; Giovanni Gabriele; Scott Sieg; Matthew C. Altman; Patrice M. Becker; Nadine Rouphael.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.02.22273396

ABSTRACT

Background: Better understanding of the association between characteristics of patients hospital-ized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. Methods: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1,164 patients from 20 hospitals across the United States. Disease severi-ty was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multi-variable logistic regression was performed. Findings: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsuper-vised clustering of ordinal score over time revealed distinct disease course trajectories. Risk fac-tors associated with prolonged hospitalization or death by day 28 included age [≥] 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) hav-ing at least one symptom consistent with PASC, most commonly dyspnea (56% among symp-tomatic patients). Female sex was the only associated risk factor for PASC. Interpretation: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. Funding: NIH


Subject(s)
COVID-19 , Lymphopenia , Dyspnea , Respiratory Insufficiency
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.11.475918

ABSTRACT

Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, very little progress has been made to identify curative therapies to treat COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and death to develop tailored immunotherapy strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) presentation and effector T cell signature, while severe disease and death were associated with an altered Ag presentation signature, increased numbers of circulating inflammatory, immature myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages (AM) were not only severely depleted, but also had an altered Ag presentation signature, and were replaced by inflammatory monocytes and monocyte-derived macrophages (MoM{phi}). Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality were restored in patients that recovered. These data therefore suggest that local and systemic myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung inflammatory illnesses.


Subject(s)
Coronavirus Infections , Adenocarcinoma, Bronchiolo-Alveolar , Carcinoma, Renal Cell , Death , COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.09.21267548

ABSTRACT

Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using longitudinally collected biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Using longitudinal measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 upregulated and 40 downregulated proteins associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. Using longitudinal clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Subject(s)
Severe Acute Respiratory Syndrome , Kidney Diseases , Renal Tubular Transport, Inborn Errors , Acute Kidney Injury , COVID-19 , Fanconi Syndrome , Cardiomyopathies
8.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3945929

ABSTRACT

Concerns that infection with SARS-CoV-2, the etiological agent of COVID-19, may cause new-onset diabetes persist amidst an evolving research landscape, and precise risk assessment is hampered by at times conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets all pancreatic cell types. Importantly, the infection remains highly circumscribed, largely non-cytopathic, and despite high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, do not support the proposition that in vivo targeting of beta cells by SARS-CoV-2 precipitates new-onset diabetes. If restricted pancreatic damage accrued by COVID-19 increases cumulative diabetes risk, however, remains to be evaluated.Funding: These efforts were supported by JDRF 3-PDF-2018-575-A-N (V.v.d.H.); NIH/NIDDK R01DK12392, NIH/NIAID P01AI042288 and NIH/NIAID U54AI142766-S1 (M.A.A.); NIH/NIAID Center of Excellence for Influenza Research and Response/Center for Research for Influenza Pathogenesis and Transmission contract # 75N93019R00028, NIH/NIAID U19AI135972 (supplement), Defense Advanced Research Projects Agency HR0011-19-2-0020, JPB Foundation, and Open Philanthropy Project # 2020-215611 (5384), Anonymous (A.G.-S.); NIH/NIAID R01AI151029 and NIA/NIAID U01AI150748 (B.R.R.); NIH/NIDDK R01DK130425 (M.S.); and NIH/NIAID R01AI134971, NIH/NIDDK U01DK123716, NIH/NIDDK U01DK104162, NIH/NIDDK P30DK020541 and NIH/NIDDK R01DK130425 (D.H.).Funding: The AG-S laboratory has received research support from Pfizer, Senhwa Biosciences, Kenall Manufacturing, Avimex, Johnson & Johnson, Dynavax, 7Hills Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model Medicines and Merck, outside of the reported work. Declaration of Interests: AG-S has consulting agreements for the following companies involving cash and/or stock: Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Vaxalto, Pagoda, Accurius, Esperovax, Farmak, Applied Biological Laboratories and Pfizer, outside of the reported work. AG-S is inventor on patents and patent applications on the use of antivirals and vaccines for the treatment and prevention of virus infections and cancer, owned by the Icahn School of Medicine at Mount Sinai, New York, outside of the reported work. All other authors declare no conflict of interest. Ethics Approval Statement: Our study is considered “not human subjects research” since all donor islet preparations were provided as de-identified tissue specimens by a commercial purveyor


Subject(s)
Diabetes Mellitus , Tumor Virus Infections , Neoplasms , Pancreatitis , COVID-19 , Sleep Disorders, Circadian Rhythm
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264015

ABSTRACT

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.


Subject(s)
COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264434

ABSTRACT

Two years into the SARS-CoV-2 pandemic, the post-acute sequelae of infection are compounding the global health crisis. Often debilitating, these sequelae are clinically heterogeneous and of unknown molecular etiology. Here, a transcriptome-wide investigation of this new condition was performed in a large cohort of acutely infected patients followed clinically into the post-acute period. Gene expression signatures of post-acute sequelae were already present in whole blood during the acute phase of infection, with both innate and adaptive immune cells involved. Plasma cells stood out as driving at least two distinct clusters of sequelae, one largely dependent on circulating antibodies against the SARS-CoV-2 spike protein and the other antibody-independent. Altogether, multiple etiologies of post-acute sequelae were found concomitant with SARS-CoV-2 infection, directly linking the emergence of these sequelae with the host response to the virus.


Subject(s)
COVID-19 , Infections
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.25.445649

ABSTRACT

Serologic markers that predict severe COVID-19 disease trajectories could enable early medical interventions and reduce morbidity and mortality. We found that distinct features of IgG Fab and Fc domain structures were present within three days of a positive test that predicted two separate disease trajectories in a prospective cohort of patients with COVID-19. One trajectory was defined by early production of neutralizing antibodies and led to mild disease. A distinct trajectory, characterized by an initial period of mild symptoms followed by rapid progression to more severe outcomes, was predicted by the absence of early neutralizing antibody responses with concomitant production of afucosylated IgGs. Elevated frequencies of monocytes expressing the receptor for afucosylated IgGs, Fc{gamma}RIIIa (CD16a), were an additional antecedent in patients with the more severe outcomes. In mechanistic studies, afucosylated immune complexes in the lung triggered an inflammatory infiltrate and cytokine production that was dependent on CD16a. Finally, in healthy subjects, mRNA SARS-CoV-2 vaccination elicited neutralizing antibodies that were enriched for Fc fucosylation and sialylation and distinct from both infection-induced trajectories. These data show the importance of combined Fab and Fc domain functions in the antiviral response, define an early antibody signature in people who progressed to more severe COVID-19 outcomes and have implications for novel therapeutic strategies targeting Fc{gamma}RIIIa pathways.


Subject(s)
COVID-19 , IgG Deficiency
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.15.21256814

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are highly effective in healthy individuals. Patients with multiple myeloma (MM) are immunocompromised due to defects in humoral and cellular immunity as well as immunosuppressive therapies. The efficacy after two doses of SARS-CoV-2 mRNA vaccination in MM patients is currently unknown. Here, we report the case of a MM patient who developed a fatal SARS-CoV-2 infection after full vaccination while in remission after B cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T treatment. We show that the patient failed to generate antibodies or SARS-CoV-2-specific B and T cell responses, highlighting the continued risk of severe coronavirus disease 2019 (COVID-19) in vaccine non-responders. In the largest cohort of vaccinated MM patients to date, we demonstrate that 15.9% lack SARS-CoV-2 spike antibody response more than 10 days after the second mRNA vaccine dose. The patients actively receiving MM treatment, especially on regimens containing anti-CD38 and anti-BCMA, have lower antibody responses compared to healthy controls. Thus, it is of critical importance to monitor this patient population for serological responses. Non-responders may benefit from ongoing public health measures and from urgent study of prophylactic treatments to prevent SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain , COVID-19 , Multiple Myeloma
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.28.21250129

ABSTRACT

Background: There is an urgent need for tools allowing the early prognosis and subsequent monitoring of individuals with heterogeneous COVID-19 disease trajectories. Pre-existing cardiovascular (CV) disease is a leading risk factor for COVID-19 susceptibility and poor outcomes, and cardiac involvement is prevalent in COVID-19 patients both during the acute phase as well as in convalescence. The utility of traditional CV risk biomarkers in mild COVID-19 disease or across disease course is poorly understood. We sought to determine if a previously validated 27-protein predictor of CV outcomes served a purpose in COVID-19. Methods: The 27-protein test of residual CV (RCV) risk was applied without modification to n=860 plasma samples from hospitalized and non-hospitalized SARS-CoV-2 infected individuals at disease presentation from three independent cohorts to predict COVID-19 severity and mortality. The same test was applied to an additional n=991 longitudinal samples to assess sensitivity to change in CV risk throughout the course of infection into convalescence. Results: In each independent cohort, RCV predictions were significantly related to maximal subsequent COVID-19 severity and to mortality. At the baseline blood draw, the mean protein-predicted likelihood of an event in subjects who died during the study period ranged from 88-99% while it ranged from 8-36% in subjects who were not admitted to hospital. Additionally, the test outperformed existing risk predictors based on commonly used laboratory chemistry values or presence of comorbidities. Application of the RCV test to sequential samples showed dramatic increases in risk during the first few days of infection followed by risk reduction in the survivors; a period of catastrophically high cardiovascular risk (above 50%) typically lasted 8-12 days and had not resolved to normal levels in most people within that timescale. Conclusions: The finding that a 27-protein candidate CV surrogate endpoint developed in multi-morbid patients prior to the pandemic is both prognostic and acutely sensitive to the adverse effects of COVID-19 suggests that this disease activates the same biologic risk-related mechanisms. The test may be useful for monitoring recovery and drug response.


Subject(s)
Cardiovascular Diseases , Severe Acute Respiratory Syndrome , COVID-19 , Heart Diseases
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.29.20182899

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and multiple organ involvement in individuals under 21 years following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To identify genes, pathways and cell types driving MIS-C, we sequenced the blood transcriptomes of MIS-C cases, pediatric cases of coronavirus disease 2019, and healthy controls. We define a MIS-C transcriptional signature partially shared with the transcriptional response to SARS-CoV-2 infection and with the signature of Kawasaki disease, a clinically similar condition. By projecting the MIS-C signature onto a co-expression network, we identified disease gene modules and found genes downregulated in MIS-C clustered in a module enriched for the transcriptional signatures of exhausted CD8+ T-cells and CD56dimCD57+ NK cells. Bayesian network analyses revealed nine key regulators of this module, including TBX21, a central coordinator of exhausted CD8+ T-cell differentiation. Together, these findings suggest dysregulated cytotoxic lymphocyte response to SARS-Cov-2 infection in MIS-C.


Subject(s)
Coronavirus Infections , Cryopyrin-Associated Periodic Syndromes , Mucocutaneous Lymph Node Syndrome , Fever , COVID-19 , Inflammation
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.31.276725

ABSTRACT

Infections with SARS-CoV-2 lead to mild to severe coronavirus disease-19 (COVID-19) with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human alveolus-on-a-chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including the interferon expression. By contrast, the adjacent endothelial layer was no infected and did neither show productive virus replication or interferon release. With prolonged infection, both cell types are damaged, and the barrier function is deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokine release, which results in the damage of the alveolar barrier function and viral dissemination.


Subject(s)
COVID-19 , Adenocarcinoma, Bronchiolo-Alveolar
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.04.20142752

ABSTRACT

Initially, the global outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spared children from severe disease. However, after the initial wave of infections, clusters of a novel hyperinflammatory disease have been reported in regions with ongoing SARS-CoV-2 epidemics. While the characteristic clinical features are becoming clear, the pathophysiology remains unknown. Herein, we report on the immune profiles of eight Multisystem Inflammatory Syndrome in Children (MIS-C) cases. We document that all MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with normal isotype-switching and neutralization capability. We further profiled the secreted immune response by high-dimensional cytokine assays, which identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1) and mucosal immune dysregulation (IL-17A, CCL20, CCL28). Mass cytometry immunophenotyping of peripheral blood revealed reductions of mDC1 and non-classical monocytes, as well as both NK- and T-lymphocytes, suggesting extravasation to affected tissues. Markers of activated myeloid function were also evident, including upregulation of ICAM1 and Fc{gamma}R1 in neutrophil and non-classical monocytes, well-documented markers in autoinflammation and autoimmunity that indicate enhanced antigen presentation and Fc-mediated responses. Finally, to assess the role for autoimmunity secondary to infection, we profiled the auto-antigen reactivity of MIS-C plasma, which revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal and immune-cell antigens. All patients were treated with anti-IL6R antibody or IVIG, which led to rapid disease resolution tracking with normalization of inflammatory markers. One Sentence SummaryThis study maps the cellular and serological immune dysfunction underlying a novel pediatric inflammatory syndrome associated with SARS-CoV-2.


Subject(s)
COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.26.20141341

ABSTRACT

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 single parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining and data acquisition protocols can all introduce technical variation that can potentially confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We further demonstrate the application of this workflow to characterize immune responses in a cohort of hospitalized COVID-19 patients, highlighting key disease-associated changes in immune cell frequency and phenotype.


Subject(s)
COVID-19
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.28.20115758

ABSTRACT

The COVID-19 pandemic caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to more than 100,000 deaths in the United States. Several studies have revealed that the hyper-inflammatory response induced by SARS-CoV-2 is a major cause of disease severity and death in infected patients. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum IL-6, IL-8, TNF-, and IL-1{beta} in hospitalized COVID-19 patients upon admission to the Mount Sinai Health System in New York. Patients (n=1484) were followed up to 41 days (median 8 days) and clinical information, laboratory test results and patient outcomes were collected. In 244 patients, cytokine measurements were repeated over time, and effect of drugs could be assessed. Kaplan-Meier methods were used to compare survival by cytokine strata, followed by Cox regression models to evaluate the independent predictive value of baseline cytokines. We found that high serum IL-6, IL-8, and TNF- levels at the time of hospitalization were strong and independent predictors of patient survival. Importantly, when adjusting for disease severity score, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF- serum levels remained independent and significant predictors of disease severity and death. We propose that serum IL-6 and TNF- levels should be considered in the management and treatment of COVID-19 patients to stratify prospective clinical trials, guide resource allocation and inform therapeutic options. We also propose that patients with high IL-6 and TNF- levels should be assessed for combinatorial blockade of pathogenic inflammation in this disease.


Subject(s)
Severe Acute Respiratory Syndrome , Hypoxia , Death , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL